
Delivering a
great Proof
of Concept.
7 steps to success

Whitepaper.

A GUIDE TO GREAT.

Alex James, CTO
© Ascent 2022

INTRODUCTION

CHAPTER 1: UNDERSTANDING THE PROOF OF CONCEPT

WHAT IS A POC ANYWAY?

WHY PURSUE A POC?

THE BOUNDARIES OF A POC

CHAPTER 2: A SEVEN-STEP BATTLE-TESTED POC

01 SET YOUR GOALS & REQUIREMENTS

02 SCOPE YOUR SOLUTION

03 CREATE YOUR ARCHITECTURE

04 ACKNOWLEDGE YOUR ASSUMPTIONS

05 BUILD YOUR TEAM

06 EXECUTE

07 EVALUATE YOUR RESULTS

CHAPTER 3: PRACTICAL POC EXAMPLES

GETTING BUSINESS VALUE FROM IOT SENSORS

AUTOMATING MANUAL DATA PROCESSING

PROVING A DATA-MODEL CAN IMPROVE PRODUCT TARGETING

CHAPTER 4: BUILDING YOUR POC

SECURING INTERNAL UNDERSTANDING & BUY-IN

TAKING YOU FROM IDEA TO POC TO PRODUCTION

THE VALUE OF MICROSOFT AZURE IN A POC

CONCLUSION

APPENDIX

GLOSSARY

FURTHER RESOURCES

3

4

4

4

6

7

7

8

9

10

11

12

15

17

17

19

20

22

22

22

22

24

25

25

25

Contents.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

2
Ascent

The purpose of this whitepaper is to give you some practical,
experience-based guidance on understanding, planning and
executing a great Proof of Concept.
It is designed for both decision makers who may not have technical backgrounds
and software and data engineers who might be unfamiliar with the business
impact and relevance of PoCs.

 - Chapter 1: builds a basic understanding of what PoCs are/should be - and
their value and limitations.

 - Chapter 2: then lays out a multi-step framework approach to delivering your
PoC.

 - Chapter 3: should reinforce your understanding with real-world examples.

 - Chapter 4: is all about mobilising your PoC and prioritising your first steps.

Introduction.

Alex James
CTO, Ascent

Alex is a business technologist, founder and lifelong
software engineer. He has spent the last decade working
with customers on developing and gearing their technology
strategies to get to value fast.

linkedin.com/alex-james

About
the
author.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

3
Ascent

https://www.linkedin.com/in/alexander-james-/

What is a PoC? How does it help me? What value does it offer?
What are the common pitfalls?

What is a PoC anyway?

A Proof of Concept (PoC) is a time-bound, fixed scope exercise that tests the
feasibility of a concept against clear goals and success metrics.
A PoC should be thought of a small-scale exercise. A software/ data PoC should
typically be deliverable in 12 weeks or less and should prove the viability of
at least one new business capability through a new or novel application of
technology or techniques.

A good PoC will be rooted in a business value-based outcome, rather than
a purely technical outcome. However, it should not deliver a business-ready
capability, but rather prove that the proposed capability is realistic, and the
proposed approach is feasible.

Why pursue a PoC?

Understand new technologies.
PoCs allow organisations to discover and learn about new technologies with less
risk.

If new technologies are explored and deployed without a solid underlying
framework, it can lead to a run-away effect: engineers experimenting with (and
potentially deploying) numerous small exploratory solutions into production,
over time leading to unwanted, difficult-to-manage complexity and design anti-
patterns.

PoCs encourage the structured adoption of new technologies, providing a
framework to manage time and cost, and the ability to evaluate the outcome
constructively. This results in a more coherent technology strategy moving
forward into production.

Chapter 1:
Understanding the
Proof of Concept.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

4
Ascent

Manage risk.
There are many approaches in software and data project management to
understanding and managing risk. One of the most persuasive arguments in
favour of Agile is that increasing the flexibility of a project reduces the risk.

Most technology projects contain significant unknowns and assumptions. PoCs
are one of the most effective mitigation tools to surface risk, and often go
hand-in-hand with Discovery exercises on larger projects. By challenging core
assumptions and stepping through real world solutions to problems, the risks
around a project are greatly reduced.

Often in large-scale complex software projects, there will be several areas even
a very experienced engineering team will not be familiar with - or will be working
on assumptions based on prior experience. By acknowledging this reality and
dealing with these assumptions as early as possible, the risk of large technology
blockers arising later in a project is greatly reduced.

Increase stakeholder buy-in.
PoCs are a great example of the power of ‘show, don’t tell’. One of the big
challenges often facing inherently technical projects is that many stakeholders
are not technical and struggle to really understand the solution,associated value
and risk being presented.

A well-designed and executed PoC is a strong, demonstrable anchor point in the
evolution of a project that proves that not only is a solution viable, but that the
ability to both technically and operationally implement that solution exists and
can be scoped in terms of both time and money.

Psychologically, project momentum is created by a first small step. Confidence
is built, teams gain insight, risk is reduced and a strong statement of intent is
made.

Create a culture of innovation.
PoCs are great enablers of technical change in an organisation. An organisation
that routinely invests in PoCs is typically committed to understanding how
technology can really drive value in new and innovative ways.

Not every PoC will be a business success, and even among PoCs that are a
success, not all will drive a production project. Acknowledging this reality is
important in organisations that want to embrace innovation. It is impossible to
truly innovate without exploring different technical solutions and testing their
viability in your own business context.

Because of their time-bound nature, PoCs are relatively inexpensive - but they
can be key in shaping an organisation’s approach towards implementing new
technology. Even when a PoC does not move forward into a full production
solution, it still creates a lot of internal value: a shared understanding, a
commitment to a technical vision and a set of learnings that will often have a
meaningful impact on future workstreams.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

5
Ascent

The boundaries of a PoC.
It is important to understand where the boundaries of a PoC lie. At what point
does a PoC stop fulfilling its purpose? What is too small and simple, or too big
and complex?

Sizing a PoC.
The simplest axis to measure and size a PoC is delivery time. Anything that
takes longer than 14 weeks from inception to results is probably too big and
ambitious to be considered a viable PoC. We typically limit PoCs to 12 weeks,
depending upon the complexity and scope of what needs to be validated.

Another simple way to protect against oversizing is to stay true to a singular
problem statement. PoCs should not try to prove multiple disparate problem
statements simultaneously. It may often be tempting to just add a little more,
or to get a little more from an engineering team – but this risks undermining the
real value of your PoC.

Spike vs PoC.
The term Spike is usually related to Agile delivery. In some ways a Spike
shares roots with a PoC - they are both exercises that answer a question and
demonstrate feasibility – however, its scope and methodology are very different.

A Spike is undertaken within the Agile process of developing a broader solution.
It is effectively a Story that has the goal of gathering information and assessing
implementation feasibility through both researching and writing code.

Spikes are ad hoc technical exercises often undertaken by single developers in
the context of a broader project. They may write code and use cloud services to
check the feasibility of a technical solution just like a PoC, but they are usually
scoped to a strictly technical outcome of very narrow scope: can this be done as
expected? Is the engineering team happy with the result?

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

6
Ascent

Where do I start? How do I optimise for success?
What should I measure?

01 Set your goals & requirements.

A successful PoC should clearly lay out the business goal and articulate specific
objectives.

A well-understood and common framework for defining a business goal and
maintaining clarity in a PoC is SMART:

 - Specific: See pitfalls section: a lack of specificity leads to a lack of focus.

 - Measurable: Clearly defined, socialised and understood success criteria
written out up front and referred to frequently.

 - Attainable: A ballooning of scope can be the undoing of a PoC. Your scope
must be very narrow and stay focused on proving a single statement.

 - Relevant: Engage related stakeholders and consider their strategic needs.
Enrol them in the next steps and ensure they are invested in the outcome: ‘if
X, then we will need your help to do Y’.

 - Time-Bound: A PoC should typically take between 8-14 weeks.

Ensuring that the PoC goal laid out ties in with an organisation’s vision
statement, strategic objectives and specific stakeholder objectives is extremely
important. Often the instigators of PoCs will be technical stakeholders, but
ultimately the broader budget holders may not be technical. A PoC may fail to
gain traction if its success cannot be easily understood in a broader business
context, and demonstrably linked to unlocking higher order value.

Chapter 2:
A seven-step battle-
tested PoC framework.

Set your goals
& requirements.

Scope your
solution.

Create your
architecture.

Acknowledge
your

assumptions.

Build your
team. Execute. Evaluate your

results.

01 02 03 04 05 06 07

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

7
Ascent

02 Scope your solution.

Take the broad statements set out in your goals and requirements and refine
them down to a short, formal output that captures the expected scope of the
solution.

A formal scope should include:

 - Objectives: Your business goal above broken down into direct, short
objectives to be fulfilled.

 - Success criteria: Concise, ideally quantitative metrics that will define if the
project, once delivered, is a success.

A qualitative, not-very-useful success metric may look like this:

‘The system must react to a user quickly.’
A better, more quantitative success statement may look like:

‘The system must consistently and concurrently detect,
process and respond to an IoT event in sub 2 seconds.’
The second example is an attainable, clearly defined target that creates
clear pass or fail success criteria. The first example by contrast is so vague
it would be hard to say if the system has met its goals at all.

 - Budget: Budgets can vary depending on the type of PoC, so there is
no single rule of thumb approach. It can vary depending on resource
requirements, how the outcome will be validated, the technical complexity
etc. You may have to work with a 3rd party supplier if you do not have in-
house delivery capability to do this.

 - Non-functional requirements: For a PoC, these are usually much
lighter than for a production system. However, some key areas such as
compatibility, concurrency, transactional costs and potential scalability
should at least be considered and recorded.

Scoping is important because it gives your team a really strong focus. There is
often a temptation to broaden scope. A well-written scoping document can be
referred to throughout the life of the project to help keep it on track.

Output:
A ‘statement of intent’ written as structured, concise document that
formalises the objectives, success criteria, budget and non-functional
requirements.

Output:
A 1-2 page free-form document containing a clearly written problem
statement and a SMART business goal. It should reflect input from key
stakeholders and a strong connection to strategic objectives.

*
The number
of metrics to
define should be
proportional to
the complexity
of the PoC. It is
important not
to overload a
project with too
many success
criteria as it
reduces focus on
core objectives.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

8
Ascent

03 Create your architecture.

The goal of creating an architecture upfront is not to create a perfect solution,
but rather to set a technical expectation going into the project for the delivery
team to pick up, own and modify as they require.

The key to a good PoC architecture is simplicity – reducing the number of
components and finding the simplest, most direct way to fulfil the scope.
Remember you are not designing a production system, so much of the weight
associated with productions systems can be kept out of scope.

Before you make choices about technologies, tools and components, make sure
you:

 - Explore potential options.

 - Understand the options and the trade offs.

 - Understand why existing choices (such as legacy systems) were made.

 - Think about the future.

It’s very important to keep in mind the purpose of a PoC when creating an
architecture. It is not the goal to create a functional specification, as that would
be far beyond the scope of what a PoC should be setting out to achieve.

Instead, the architecture should act as a very lightweight technical
specification.

Below is Joel Spolsky’s excellent definition of the difference between a
functional and technical specification:

“A functional specification describes how a product will work entirely from
the user’s perspective. It doesn’t care how the thing is implemented. It
talks about features. It specifies screens, menus, dialogs, and so on.

A technical specification describes the internal implementation of the
program. It talks about data structures, relational database models,
choice of programming languages and tools, algorithms, etc.”

It is also worth noting that great PoCs take the broader technical environment
of the organisation into account. Whilst the PoC has no ambition to move
directly into production, the technology selected should at least exist in harmony
with your production tech, or you may struggle to get stakeholder buy-in if the
PoC feels too far removed from the norm.

If the PoC is proven successful, then moving forward with the concept is also
much easier. This is because creating a production version does not require a
complete overhaul of approach, which can often undermine the intent of the
PoC in the first place.

During the architecture phase, especially in larger more complex organisations,
is it worth dedicating time to research, understand and harmonise with your
existing production architectures and products rather than just going with a
stock architecture that may conflict with existing solutions.

*
A typical PoC
architecture
often fits on a
single page.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

9
Ascent

Below is an example of a well-designed and presented Azure-based model
architecture for a PoC, demonstrating use of voice to control IoT devices:

Technical Notes:
1. Using voice, the user asks the voice assistant app to turn on the exterior house lights.
2. Using the Speech SDK, the app connects to Direct Line Speech. If keywords are confirmed by Keyword Verification,

the speech is transcribed to text and sent to the Bot Service.
3. The Bot Service connects to Language Understanding Service (LUIS). LUIS allows an application to understand

what a person wants in their own words. The intent of the user’s request (example: TurnOnLight) is returned to the
Bot Service.

4. The request is relayed to the device.
 - If the device is connected to Azure IoT Hub, Bot Service connects to Azure IoT Hub Service API and sends the

command to the device using either a Direct Method, an update to the device twin’s Desired Property, or a
Cloud to Device message.

 - If the device is connected to a third party IoT cloud, Bot Service connects to the third-party service API and
sends a command to the device.

5. The Bot returns the results of the command to the user by generating a response that includes the text to speak.
6. The response is turned into audio using the Text-to-Speech service and passed back to the voice assistant app by

Direct Line Speech.
7. Application Insights gathers runtime telemetry to help development with Bot performance and usage.
8. Azure App Service hosts the Bot Service application.

Credit: Microsoft

04 Acknowledge your assumptions.

This is one of the most critical steps in setting up for success - but is one of the
most overlooked.

At the core of a PoC, there are always assumptions to be proven or rebuked.
These may be things like the assumption that an API is suitable for a given task,
or that Azure function can be used be able to process a data set in a certain
time period.

Output:
A high level architectural diagram with accompanying basic notes that
shows the shape of the proposed PoC solution. This will often be based on a
Microsoft Azure model architecture. It is often also a good idea to present
how this solution would slot into - and ideally augment - the current
technical landscape.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

10
Ascent

Sitting with the whole team and creating a table that lists every assumption
that every team member currently has in relation to the above goals, solution
and architecture will give you a high level of clarity as to what hurdles need to
be cleared for the PoC to ultimately become a success. An initial idea of how the
team intends to tackle each assumption can also be valuable at this stage.

If there were no assumptions or unknowns, there would be no need for a PoC:
the team would already have total confidence in the solution and could just
start building a production product immediately.

This table can then be kept as a register, moving the assumptions from red
through to amber and eventually green as the team progresses through the PoC
and deals with the various assumptions.

Below is an example of a couple of typical PoC assumptions:

Assumption Impact Possible Outcomes

Device API will
provide real time
status

Required to reflect
status correctly in app –
a core feature

If the API does not provide real time
status, the viability of the approach
depends on how close to real-time
status it is. If it is accurate to within 10
minutes, this is acceptable. If greater
than that, alternative approaches
must be evaluated.

Device API sends its
own identifier with
each request

Required to
support the current
implementation
architecture which
assumes a stateless
approach

If the API cannot provide an
identifier with each request, then the
architecture will need modifying to be
able to retain the device identifier.

05 Build your team.

One of the hard parts about delivering a great PoC is its characteristic
compressed timescale, which gives teams little time to form, storm, norm and
perform. It also increases the pressure on communication channels and leaves
little time for misunderstandings.

With this is mind it is usually best to keep a PoC team as small and closely knit
as possible, and where possible composed of individuals who are already familiar
with working with each other.

Output:
A ‘statement of intent’ written as structured, concise document that
formalises the objectives, success criteria, budget and non-functional
requirements.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

11
Ascent

Below is an example of a small software PoC team:

Role Days / Week Description

Delivery Manager 2 Responsible for successful delivery of the project.
Manages process, works with stakeholders to
communicate progress and controls the scope of
the deliverable.

Lead Engineer 5 Responsible for the technical outcome of the
project. Manages the delivery team, makes key
technical choices and owns the architecture and
outcome.

Senior Engineer 5 Works with the Lead Engineer to develop the
solution.

DevOps 1 Responsible for getting required infrastructure and
tooling set up and in place for development.

QA and additional roles can be added as required, depending upon scope and
budget – but often basic acceptance testing is all that is required for non-
production systems.

06 Execute.

Executing a successful development project is a topic that can (and does) fill
many books. Within the scope of this paper, we will just cover the very high-level
considerations to be made when moving into the execution of a PoC.

Project handover.
Often the stakeholders responsible for instigating an PoC have little input in the
actual development execution of a PoC, and as a result a robust knowledge-
transfer approach and handover process into the implementation team is
required.

If all prior steps have been followed and documented, the bulk of the work is
done. But it’s always good practice to have official, structured handover and
kick-off meetings involving the entire engineering team.

Output:
A visual team chart that shows who exactly will undertake the work
to execute the PoC, their individual responsibilities and any important
reporting lines. A time-based breakdown of associated costs may also be
required.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

12
Ascent

Discovery.
It may be temping on such a relatively short project to just dive in on day
one: to start writing code and solving the problems at hand. However, we
would always recommend that the over the first couple of days the team
instead steps through a structured discovery process to prepare thoroughly –
because ultimately it is your stakeholders who will determine whether the PoC
is successful and investable, regardless of the extent to which you solve the
problem or the quality of your code.

A typical framework we would use during a PoC discovery looks like this:

Mobilise Internal Team
Kick-off

Handover all engagement material and knowledge
to delivery team. Share experiences so far: challenges
faced, what to watch out for, rationale behind decisions.
Review risks and assumptions.

Customer
Kick-off

Introduce the team. Break the ice. Explain the process to
the customer. Set expectations around their involvement
and alignment on outcomes.

Understand Business
Engagement

Planning & Prioritisation workshop or interview with
key business stakeholders to ensure the business
requirements are well-understood and detailed.

Technical
Engagement

A conversation/ demonstration from technical
stakeholders to understand the environment,
architecture, tech stack and pipelining.

User
Engagement

A collaborative whiteboarding session using multiple
techniques to empathise with users and stakeholders
and better understand the business problem.

Explore High Level
Solution
Architecture

Review and understand the high-level architecture, and
the broader context it sits within.

Definitions &
Estimates

A session whose outcome is that the team feels
comfortable that the scope and timeline align and are
realistic. Often done using high-level stories and point-
based estimates.

Collate &
Prepare

Commercials
& Definitions
Review

Based on all the outcomes of the prior steps, loop back
around to the original commercial position, outcomes
and definitions to check everything aligns.

Stakeholder
Playback

Communicate the outcomes of the prior steps clearly
back to key stakeholders.

Transition Sprint Zero Commence Sprint Zero to move from discovery into
development.

Dedicating two or three days to stepping through these exercises can greatly
increase the chances of success, especially in terms of identifying mismatched
expectations or misunderstandings between stakeholders.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

13
Ascent

Agile process.
Due to the short nature of PoCs (which typically will only span a handful of
sprints), it is more important than ever to follow a clear agile process. The
flavour of Agile is not important, rather just that a specific framework is clearly
laid out and followed.

Ascent tends to favour a light agile process over a full SCRUM process for
PoCs as it reduces the process load on the team. However, this requires more
experienced team leads and more senior and confident developers.

Project management.
A common mistake with PoCs is to assume that because they are relatively
small, they do not need much oversight. The opposite is often true: getting
the most out of a short project and managing effort to a desired outcome in a
compressed timeframe requires experience.

This means that stakeholder management and communication is vital. Small
delays in feedback or in getting information can have an oversized impact on
the project delivery timeline.

A good Project or Delivery Manager is critical to the overall success and
acceptance of most PoCs and should work closely with the technical delivery
team to make sure their voices are heard, and that the technical decisions being
made are aligned with the overall purpose of the PoC.

Team performance.
One practical challenge a PoC presents is that the executing team does not
have a large window of time in which to form, storm, norm and perform. For
this reason it is usually preferable where possible to undertake PoCs using teams
that already have some level of experience with short time scale projects.

One way to tackle this is to have a team lead who specialises in delivering PoCs
and is experienced in this area, and then build any additional team members
around them based on relevant knowledge of the PoC domain.

The Project or Delivery Manager should have a clear way of measuring team
velocity and tracking output against the timeline and budget.

Output:
A real world PoC, undertaken within the time and budget window set out.
The executing team should have a high level of confidence in their ability to
produce clear results to evaluate.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

14
Ascent

07 Evaluate your results.

It is essential that this is a fixed step in the process with time and budget
dedicated to it. Too often PoCs are developed only to be sent into a business void
with little impact or further steps taken regardless of their success or failure.

Evaluation.
If the first two steps of the seven-step process were followed correctly, then
evaluating your PoC should be a straightforward process.

A table should be produced that reviews the objectives and success criteria, and
then objectively tests and passes or fails each point respectively.

Criteria Status Comment

The system must
consistently and
concurrently
detect, process
and respond to an
IoT event in sub 2
seconds

Success On non-production environments the system
consistently responded in sub 0.5 seconds.

When a simple load test was simulated to emulate
500,000 devices and 100,000 users, the system
continued to consistently respond in sub 1 second.

Due to non-production quality systems, there were
many dropped requests and individual requests that
timed out, but these issues could be resolved in a
production-grade system.

The system can be
built on serverless
technology

Failure Due to some technical constraints with persisting
data, the team had to use an Azure Logic app and
a Cosmos database to implement one part of the
system.

However, this has not impacted the overall non-
functional requirements that the serverless solution
was intended for, so the team believes it is an
acceptable compromise.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

15
Ascent

Success.
If your Proof of Concept is successful, then the most important step is to
communicate this clearly to all stakeholders. Use the above table as a starting
point to outline how success has been defined.

There are 2 key questions to consider at this point:

1. What’s the impact of expanding this PoC into a production solution? This
may be as simple as a cost saving figure, or a much more complex long term
value proposition. Clearly set this out and articulate the benefits.

2. What’s the next step? Should this PoC be productionised? Should it spawn
a new project entirely? This follows the first point and should set out the
commercial implications and timeline of taking the next step. This will
support a robust cost/ benefit analysis of implementing the outcomes and
learnings from the successful PoC.

Keeping up the momentum once a PoC is concluded successfully is critical. The
business value of a PoC is not that it was deemed a success, but rather that its
success should enable the business to rapidly and confidently execute upon a
solution that drives tangible and strong value and return on investment.

Failure.
If your Proof of Concept is not successful there are two paths you can follow:

1. Retry the PoC from the start, but with a different set of goals, and a
different approach.

2. Accept that the outcome of the PoC has disproved an idea, and in doing so
a significant amount of time and effort has likely been saved over pursuing
something that would not have been able to create value for the business.

In either case it’s still valuable for the team to work through and identify, record
and share any insights and lessons that came out of the project.

We would encourage a similar presentation to be made to stakeholders even in
the event of failure, with a focus on the learnings and the tangible reasons the
PoC was not deemed a success. This transparency helps increase confidence
that the process works and helps enable future buy in for future PoCs.

Output:
Clear, final acknowledgment of the success or failure of the PoC. A clear
next step to either move forward to production, retry or refine PoC, or
capture knowledge gained.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

16
Ascent

This chapter presents three real-world anonymised examples of
PoCs that Ascent has delivered. This should help bring to life to the
practical applications of a PoC and the kind of challenges they
present.

Getting business value from IoT sensors.
A large property management company with several smart buildings was unsure
how to derive value from their many IoT sensors. They were uncertain about
what could be achieved technically, and consequently what could be achieved in
terms of value.

Without a mature data platform, there was no clear existing technical solution
to aggregate real time data, or extract value from this data.

[Stock IMAGE]

Chapter 3:
Practical PoC
Examples.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

17
Ascent

In this situation, there are many possible directions to turn:

 - Consulting: Explore the domain to work out how to strategically break down
and tackle the challenge.

 - Engineering: Create an internal budget and workstream - and hire a team to
start laying down a large platform-based solution.

 - Procurement: Go to external vendors who offer various off-the-shelf
solutions that may partially fit.

 - PoC: Prove a theory with minimal investment and use its outcome to
determine the next step.

A PoC was ultimately determined as the right approach: in this scenario, it
was possible to break down the large problem statement into a much smaller
statement and still broadly prove the larger one. The rationale for the PoC was
that if you can prove you can take just one sensor type, ingest and store that
data in a new data platform and then pass that data on to another business
department, you not only prove the technical feasibility of the solution, but you
prove the overall concept - that IoT sensor data can be consumed and leveraged
in a useful manner by the business.

It was decided that fire-door sensors were an ideal candidate for the PoC due
to their existing API and clearly definable success criteria: understanding in
real-time if fire doors are open or closed to drive an on-site response. Ascent
proposed the following Azure architecture to deliver this PoC over a 12-week
timeline:

This PoC was delivered on time and was deemed a success.

CUSTOMER
TEAM

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

18
Ascent

Automating manual data processing.
A leading business body was suffering from having to manually collect, process
and make sense of data relating to meetings and email communications – an
extremely expensive process, involving many people. They wanted to see if Azure
could be used to ingest, model and apply machine learning to their data and
reduce the number of human hours entailed in working through the data and
acting upon it.

We identified a single workflow as a subset of this problem, relating to a specific
kind of email processes - and proposed a PoC with clear outcomes. The PoC
ran over 12 weeks and used several Azure services to form a basic data pipeline,
including Data Factory, Databricks and Synapse Analytics.

The PoC identified several problems with the proposed approach. The complexity
and breadth of inbound information meant that although the amount of human
interaction was significantly reduced, the organisation had to accept that to
achieve desired quality levels, the process could not be entirely automated.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

19
Ascent

Proving that a data model can improve product targeting.
A large beverage company with a broad range of drinks and many physical
locations wanted to interact with their customers more intelligently - building
the ability to understand their purchasing habits and recommend new things
they could try.

There were unsure about the feasibility of this idea, given the broad range of
disparate data sources and the uncertain nature of Data Science.

[Stock IMAGE]

Ascent undertook a PoC to explore viability, using a real-life marketing
campaign as the ultimate measure of the effectiveness of the solution. Clear
targets were laid out to define success.

Ascent proposed the following Azure architecture to deliver this PoC over a 14-
week timeline:

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

20
Ascent

The results were astoundingly successful and delivered several times the defined
success metrics, in some cases lifting conversion rates by over 30%. The system
was then adapted for production and expanded, building several further data
models alongside the original test case.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

21
Ascent

Chapter 4:

Securing internal understanding & buy-in.
A big part of getting a PoC moving internally is building credibility. This is why it
is often useful to outsource the planning and production of a PoC to a company
who specialises in the process.

Engaging an external entity guarantees impartiality, offers a new perspective
on the challenge that might be hard to achieve with internal teams and creates
an internal feeling of both confidence and materiality around a PoC proposal.
This can be especially useful in terms of fixing budget and timeline for delivery,
as well as clearly communicating the value proposition into the relevant
stakeholders.

The value of Microsoft Azure in a PoC.
Microsoft Azure is a cloud platform and service ecosystem that makes it easy to
develop new cloud-native applications. There are a vast number of ready-to-use
Azure services that you can integrate with your applications to instantly take
advantage of new cloud capabilities, while minimising the need to develop those
services yourself. Practically speaking, this allows you to focus on delivering
business value rather than on writing and maintaining custom solutions for
common problems.

Building your PoC.

 - Defining the right scope and complexity for your initiatives is tough.
Ascent has over 15 years’ experience in building software and data
science PoCs, and has developed a set of fixed-price PoC engagements
on Microsoft Azure that we call Highlighters. These are designed to
get you moving by breaking down the business challenge into small,
digestible blocks that require minimal commitment.

We help you set out technical principles that pave the way for larger
scale transformation - then roadtest them in a prototype to demonstrate
effectiveness and value. You can find out more about how we work at
ascent.io.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

22
Ascent

https://www.ascent.io/app-dev-highlighter
https://www.ascent.io/services

From low code/ no code offerings such as Power Automate and Power Apps
through to complex developer offerings such as Cognitive Services, Azure
enables the rapid development and deployment of PoCs that can then be
progressed natively. Once Azure platform patterns are implemented and proven
effective, they can be quickly scaled out into full production systems with very
low friction.

This kind of cloud-first approach has been a key enabler in making PoCs cost-
effective as it is now possible to build and test complex software services with
little upfront infrastructure cost or Capex required during development and PoC
phases. Those solutions can then scale outwards as required with volume-based
and consumption-based pricing.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

23
Ascent

In this guide, we have covered how a Proof of Concept can be used
to evaluate a potential technology or concept and explore how it
can be used to create business value.

We have highlighted the value of the PoC in identifying unknowns and
challenges before implementing broader, more costly solutions. Your PoC is
also likely to create additional value your organisation in the form of insight,
learning, stakeholder buy-in and momentum.

Conclusion.

We help customers build digital muscle.

We focus on developing capabilities inside customer businesses that are
founded on the right relationships between users, data, software and cloud.

We have years of experience designing and building PoCs, often leading to
larger transformative projects. By applying our skills across software and data
engineering, new product development, advanced analytics and data science,
cloud, IoT and Machine Learning ,we help customers redefine and strengthen
their relationship with technology.

If you have a Proof of Concept in mind – or would like to discuss an idea
with our team - we’d love to hear from you. Get in touch at ascent.io or
mail us directly at letstalk@ascent.io.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

24
Ascent

http://ascent.io
mailto:letstalk%40ascent.io?subject=

Glossary.

API Application Programme Interface. A software interface common for
connecting between computer programmes.

Agile A method of project management characterised by the division of tasks
in short phases of work with frequent reassessment.

Agile Story The smallest unit of work in an Agile framework.

Azure Microsoft’s public cloud computing platform.

IoT Internet of Things. Physical devices that are embedded with sensors
and processing ability that connect and exchange data with other
devices and systems.

MVP Minimum Viable Product. A version of a project with just enough
features to function and be used by an early subset of customers.

NFRs Non-Functional Requirements. A criteria that can be used to judge the
operation of a system.

PoC Proof of Concept. The realisation of a certain method or idea in order to
demonstrate its feasibility.

Spike A process that uses the simplest possible program to explore potential
solutions and determine feasibility.

Appendix.

 - Microsoft Azure.
 - Introduction to Ascent.
 - Webinar Round Table: PoC to MVP: Delivering user value faster with Azure

– Alex James (Ascent, CTO) & Denise Dourado (Microsoft, Director of Digital
and Application Innovation).

 - Ascent & Microsoft Proof of Concept Highlighter engagements.Fu
rt

he
r

Re
so

ur
ce

s.

Whitepaper.
Delivering a great Proof of Concept: 7 steps to success.

25
Ascent

https://azure.microsoft.com/en-gb/
https://www.ascent.io/#digitalMuscle
https://www.ascent.io/app-dev-highlighter

ascent.io

http://ascent.io

